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and in the boundary CFT. We also argue that multitrace deformations of the O(N) linear

sigma model in three dimensions correspond to nontrivial time-dependent backgrounds in

certain theories of infinitely many interacting massless fields on AdS4, proposed years ago

by Fradkin and Vasiliev. We point out that the phase diagram of a truly marginal large-N

deformation has an infrared limit in which only an O(N) singlet field survives. We draw

from this case lessons on the full string-theoretical interpretation of instabilities of the

dual boundary theory and exhibit a toy model that resolves the instability of the O(N)

model, generated by a marginal multitrace deformation. The resolution suggests that the

instability may not survive in an appropriate UV completion of the CFT.
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1. Introduction

Three dimensional Conformal Field Theories (CFTs) are of special interest as they may well

define macroscopic four dimensional local theories of gravity. In addition, if the boundary

theory consists of scalar fields φ in the fundamental representation of a global O(N) sym-

metry, much is known about the system, in particular in its large N limit. The emerging

structure is quite rich and includes isolated fixed points as well as a line of fixed points and

flat and unstable directions. It is not yet known if every CFT defined on some boundary

admits a corresponding local bulk theory. In the absence of that knowledge one can still

identify several interesting features that such a corresponding bulk theory would have, if

it exists.

One such case may correspond to a limit of string theory on AdS4 in which there

exists just one flat Regge trajectory with massless particles of even spin. It was suggested

in [1] (see [2] for a recent review) that such a theory of massless high spin particles exists

in an AdS4 background. The exact quantum description of such a system is still lacking,

but one could consider instead its CFT dual, which was conjectured in [3] to be a three

dimensional theory of vector particles, φ, with a global O(N) symmetry. This was based

on the identification of O(N)-singlet, conserved currents in the boundary theory with the

correct quantum numbers to correspond to massless even spin particles in the bulk. The

identification (or elimination) of the many conserved non-singlet currents was not resolved.

In [3] two fixed points of such three dimensional theories of scalars were discussed: the

trivial fixed point and the non-trivial fixed point, which are known to occur in the presence

of a relevant perturbation of the form g4(φ
2)2 in the large N limit. A dual mapping between

these two versions of the same bulk theory was suggested as well. It was also shown [4] that

the boundary theory at the non-trivial fixed point has all the features needed to describe a
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Higgs phenomenon in the bulk. In particular, 1/N corrections allow all particles with spin

larger than two to obtain a mass. We review these results in section 2. Classically, the scalar

theory has also a marginal deformation; it is generated by the operator (φ2)3. For any

finite positive value of the deformation parameter g6 the operator is quantum mechanically

irrelevant and this infrared free theory is only well defined for zero renormalized value of

g6. Namely, for any finite value of g6 the theory can only be defined in the presence of a

cutoff; it contains only particles whose mass is of the order of the cutoff and thus is afflicted

with all the bad properties of such non-renormalizable theories. In the strict large N limit

a window opens up, and the theory becomes well defined for a finite range of g6: g6 ≤ gc

[5]. The behaviour of the theory at the critical value of g6 and beyond are of interest.

For example, at the critical value the scale invariance can be spontaneously broken and

a mass scale can be generated. The effective infrared limit contains now only conserved

flavor-singlet currents.

In section 3 we review and discuss the properties of these theories and their possible

consequences for the bulk duals. This will touch both upon the dual tensionless phase

of strings and on possible quantum resolution of classical singularities. In section 4 we

establish a rather general effective field theory approach to usefully deal with multi trace

deformation. In section 5 we leave the safe realm of scalar vector particles which have

a well defined boundary theory and venture into the more shady bulk description of a

system which has interesting bulk properties, including classical space-like singularities

and a strongly interacting three dimensional CFT dual, namely the IR limit of a super

Yang-Mills theory with 16 supercharges. This theory too can be deformed by a marginal

operator of the form (Tr φ2)3, where φ denotes appropriate scalars of the theory. There,

we also discuss the issue and significance of possible instabilities and their resolution in the

boundary theory.

Finally, in section 6, we expand on the meaning of such instabilities in string theory.1 In

particular, we discuss when string theory is expected to resolve singular bulk configurations,

and when it is not. We indicate that the instabilities in the dual theory relate essentially

to bulk configurations whose singularities are of a nature that does not need to be resolved

by string theory in a near-horizon limit.

2. The O(N) vector model and its marginal deformation

Let us now review some known facts about the three dimensional theory once a classically

marginal operator,(φ2)3, is added [5]. For any finite value of N , the coupling g6 of this

operator is infrared free quantum mechanically, as the marginal operator gets a positive

anomalous dimension already at one loop. This implies that the theory is only well defined

for zero value of the coupling of this operator. In the presence of a cutoff interacting

particles have mass of the order of the cutoff. At its tri-critical point the O(N) model in

three dimensions is described by the lagrangian,

L =
1

2
∂µφ · ∂µφ +

1

6N2
g6(φ

2)3 , (2.1)

1Other consequences of instabilities in the presence of a mass gap were studied in [6].
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where the fields φ are in the vector representation of O(N). In the limit, N → ∞,

βg6
= 0 . (2.2)

1/N corrections break conformality. In the large N limit, then, g6 is a modulus. There is

no spontaneous breaking of the O(N) symmetry and it is instructive to write the effective

potential in terms of an O(N) invariant field,

σ = φ2 ; (2.3)

notice that the renormalized σ is non-positive! [5]. The effective potential is:

V (σ) = f(g6)|σ|
3 , (2.4)

where:

f(g6) = gc − g6 (2.5)

with

gc = (4π)2 . (2.6)

The system has various phases. For values of g6 smaller than gc, i.e. when f(g6) is

positive, the system consists of N massless non-interacting φ particles. These particles do

not interact in the infinite N limit; thus, correlation functions do not depend on g6 and

all the conserved currents identified by [3] do not aquire anomalous dimensions along that

direction. The corresponding high spin particles in the bulk are thus still massless.

For the special value g6 = gc, f(g6) vanishes and a flat direction in σ opens up: the

expectation value of σ becomes a modulus. For a zero value of this expectation value,

the theory continues to consist of N massless φ fields. For any non-zero value of the

expectation value the system has N massive φ particles. All have the same mass due to

the unbroken O(N) symmetry. Scale invariance is broken spontaneously so the vacuum

energy still vanishes. The Goldstone boson associated with the spontaneous breaking of

scale invariance, the dilaton, is massless and identified as the O(N) singlet field δσ ≡ σ−〈σ〉.

All the particles are non-interacting in the infinite N limit. This theory is not conformal:

in the infrared limit, it flows to another theory containing a single, massless, O(N)-singlet

particle. From this singlet, one can construct even-spin conserved currents which are now

however all O(N) singlets. For larger values of g6 the exact potential is unbounded from

below. The system is unstable (in the supersymmetric case the potential is bounded from

below and the larger g6 structure is similar to the smaller g6 structure [7]). Actually

this instability is an artifact of the dimensional regularization used above, which does not

respect the positivity of the renormalized field σ. Still it will be useful when we discuss

instabilities. In any case a more careful analysis [5] shows that the apparent instability

reflects the inability to define a renormalizable interacting theory, all masses are of the

order of the cutoff and there is no mechanism to scale them down to low mass values. In

other words, the theory depends strongly on its UV completion. This is summarized in

table 1.

There, S.B. denotes spontaneous symmetry breaking of scale invariance and V is the

vacuum energy. For f(g6) < 0 the theory is unstable. Note that the vacuum energy always

vanishes whenever the theory is well-defined.
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f(g6) |〈σ〉| S.B. masses V

f(g6) > 0 0 No 0 0

f(g6) = 0 0 No 0 0

f(g6) = 0 6= 0 Yes Massless dilaton, N 0

particles of equal mass

f(g6) < 0 ∞ Yes, Tachyons or masses −∞

but ill defined of order the cutoff

Table 1: Marginal perturbations of the O(N) model.

When 〈σ〉 6= 0 and the scale invariance is spontaneously broken, one can write down

the effective theory for energy scales below 〈σ〉, and integrate out the degrees of freedom

above that scale. The vacuum energy remains zero, however, and is not proportional to

〈σ〉3 as might be expected naively (see [8] and references therein).

For completeness and for potential future use we note that by adding more vector fields

one has also phases in which the internal global O(N) symmetry is spontaneously broken.

An example is the O(N)×O(N) model [9] with two fields in the vector representation

of O(N), with lagrangian:

L = ∂µφ1 · ∂
µφ1 + ∂µφ2 · ∂

µφ2 + λ6,0(φ
2
1)

3 + (2.7)

λ4,2(φ
2
1)

2(φ2
2) + λ2,4(φ

2
1)(φ

2
2)

2 + λ0,6(φ
2
2)

3 (2.8)

Again the β functions vanish in the strict N → ∞ limit. There are now two possible scales,

one associated with the breakdown of a global symmetry and another with the breakdown

of scale invariance. The possibilities are summarized by the table below:

O(N) O(N) scale massless massive V

+ + + all none 0

− + − (N − 1)π′s,D N, σ 0

+ − − (N − 1)π′s,D N, σ 0

− − − 2(N − 1)π′s,D σ 0

(2.9)

Again, in all cases the vacuum energy vanishes. Assume a hierarchy of scales where the

scale invariance is broken at a scale much above the scale at which the O(N) symmetries are

broken. One would have argued that one would have had a low energy effective lagrangian

for the massless pions and dilaton with a vacuum energy given by the scale at which the

global symmetry is broken. This is not true, the vacuum energy remains zero. This system

has a critical surface, on one patch the deep infrared theory contains only one massless

particle: an O(N) × O(N) singlet. For the other patches the deep infrared theory is

described by O(N) massless particles, most of which are not singlets.

3. The AdS4 dual of the deformed O(N) model

The detailed information on the boundary theory is not matched by as much information

about the bulk theory. As we mentioned earlier, [3] have conjectured that the subsector of
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the theory defined by correlators of O(N)-singlet conserved currents is dual to one of the

theories studied by Vasiliev. These theories can be defined only in AdS spaces and contain

an infinite number of massless particles of any spin. In a sense, these theories contain one

flat “Regge trajectory.” No statement was made about nonsinglet currents.2

In the absence of a clear identification we propose here a modified correspondence.

There are indication that the bulk theory corresponding to the trivial gaussian fixed point

and its dual fixed point indeed contains a flat Regge trajectory but it could — indeed it

must [10] — contain many such trajectories perhaps as many as N2. These would include

the non-singlet massless fields as well as massive fields. We call the resulting bulk theory

a Fradkin-Vasiliev system. The addition of a weakly coupled marginal operator will not

change the geometry. However once the coupling g6 reaches the critical value the situation

changes. In particular the geometry corresponding to the infrared limit in the presence of

a non zero expectation value for σ would correspond to the pure Vasiliev system. As the

boundary theory contains a single field we expect the bulk theory to contain a well defined

geometry but with a curvature larger than in the initial AdS4. Specifically, we believe that

the bulk description of the CFT at g6 = gc goes as follows. The VEV 〈σ〉 6= 0 introduces

a mass scale. At energies E À |〈σ〉|, the boundary theory has O(N2) conserved currents.

At E ¿ |〈σ〉|, the effective low-energy theory contains only the field σ, so only currents

built out of it survive.

Moreover, the boundary theory contains a-priori two dimensionless parameters, N and

g6. In addition it may contain a length scale R associated with the spatial part of the world

volume. In the case of a four dimensional boundary, the corresponding parameters are g2
Y M ,

N and R. The difference is that unlike the three dimensional system, in the large N limit,

the bosonic system does not depend on the value of g6 as long as it is smaller than gc; the

behavior is different for g6 = gc, as described above. In the supersymmetric system at the

critical point g6 = gc, scale invariance can also break spontaneously. In this case, the far-

infrared effective theory consists of two free massless particles, the dilaton and the dilatino.

The boundary theory must thus contain appropriate additional conserved currents. The

corresponding bulk theory will consist of additional higher spin massless states organized

in supermultiplets. Such systems make sense also for larger values of the coupling constant,

g6 > gc. Once again there is no g6 dependence there. This may indicate that unlike the four

dimensional case where the bulk theory depends on three parameters, for example, gs, N ,

and R, in the three dimensional boundary case the bulk theory depends on one parameter

less. A possible consequence of this is that the bulk theory has no small curvature limit at

all. In the bulk, this behavior could be reproduced if the 4d space approaches AdS4 with

a radius of curvature of order one near the boundary,3 but deep into the bulk it deviates

from it and then eventually asymptotes to another AdS4 space, with an even smaller radius

of curvature. Perhaps even as small as O(1/N). Somewhat similar phenomena exist for

N = 4 SYM [19]. The width of the bulk transition region should be proportional to 1/〈σ〉.

2Remarkably though, even at O(1/N) one can consistently restrict the theory to the singlet sector, and

interpret the anomalous dimensions of the currents in terms of a bulk symmetry breaking mechanism in

the Vasiliev theory [4].
3The theory possesses a fundamental length defined as the scale at which it becomes essentially nonlocal.
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What about the large g6 behavior? The bosonic boundary theory is ill defined. In

particular, a configuration on the boundary would decay in a finite time. In the bulk

this means that well defined initial data evolve into a naked singularity which reaches the

boundary in a finite time. This is an example of a bulk singularity that is not resolved

by the boundary theory. In fact we think this could be a little misleading. The true

meaning of the instability is clear in the presence of the cutoff: the boundary operator at

finite N is UV relevant, so it is badly behaved in the UV. In the bulk dual, a UV relevant

operator corresponds to a perturbation of AdS4 that diverges near the boundary.4 This

cannot be a localized, finite-energy initial state, since space is changed infinitely far away

from each interior point. So, the fact that this infinite-energy configuration evolves into a

singularity is not really surprising, and it may not contradict the hope that every finite-

energy, localized initial configuration evolves either smoothly or towards a singularity that

can be resolved by the boundary CFT.

We shall argue that the same phenomenon occurs in the case of a more complicated

boundary CFT, namely that describing the AdS4 × S7 compactification of d=11 super-

gravity/M theory. That example was considered by Hertog and Horowitz [11 – 13]. The

boundary theory in that case is more complicated, since it is the infraded limit of a 3d

SYM theory with 16 supercharges. The theory still bears some similarity with the O(N)

model, since it also possesses composite scalar operators of dimension one. We next review

and elaborate on the tools needed to monitor the modifications induced in the bulk theory

by various changes of the boundary theory.

4. Multitrace deformations and their use

In this section we rederive some known results about multitrace deformations using a

unifrom language, that is well suited to study both vector and adjoint theories. Let us

consider a CFTd with AdSd+1 dual. An operator O of dimension ∆ (scalar, for simplicity)

is associated to a bulk field Σ. The AdS line element is

ds2 =
L2

z2
(dz2 + dxmdxm), (4.1)

and the boundary condition for the scalar is

Σ ∼ αzd−∆ + βz∆. (4.2)

α is identified with the source for O, and β is (proportional to) the VEV of O:

α = J, β = d〈O〉J . (4.3)

The generating functional of the connected Green functions for O, W [J ], is given by

an action on AdSd+1, which depends on the field Σ as well as other fields, such as the

4Technically, this is true only for “single-trace” deformations, that is, for deformations corresponding

to one particle states in the bulk. On the other hand, at finite N , multitrace operators mix with single

trace ones. In the bulk the dual phenomenon is that in an interacting theory there is no sharp distinction

between multi-particle and one-particle states.
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metric fluctuation etc. In the case of O(N) models the explicit form of this action is still

a mystery, but the boundary theory is well known. In the case of the theory living on M-

theory branes, AdS/CFT leads us to the action of N = 1 supergravity in 11d compactified

on AdS4 × S7. The action must be computed on-shell with boundary condition α = J for

Σ. Explictly

S[Σ, . . .]|on−shell ≡ S[α], S[α]|α=J = W [J ]. (4.4)

Notice that S depends on α only, because β becomes a fixed function of α by requiring

regularity inside AdSd+1. Thanks to the standard identity

〈O〉J =
δW [J ]

δJ
, (4.5)

we can also write

β = d
δS[α]

δα
. (4.6)

Define now σ = 〈O〉J = β/d. In this formula, the VEV of O is β/d because of the relation

between β and the VEV of O given in eq. (4.3)

Call F [σ] the Legendre transform of W [J ]. Then we have the standard identities

F [σ] = W [J ] − Jσ, σ =
δW [J ]

δJ
, J = −

δF [σ]

δσ
. (4.7)

By construction, F [σ] is the effective action of the undeformed CFT; i.e. the generator of

1PI correlators for the operator O. One can add boundary terms to the bulk action S; by

choosing them judiciously, and by expressing S in function of the coefficient β, one has

S[β]|β=σ = F [σ]. (4.8)

Now, let us deform the CFT by adding a multi-trace deformation V (O)+JO. The effect of

multitrace deformations within the AdS/CFT duality was derived in [14, 15]. It amounts

to setting

α = J + V ′(β/d). (4.9)

Equations (4.6,4.9) can be written as

α = J + V ′(σ), α = −
δF [σ]

δσ
. (4.10)

So, J = −V ′(σ) − δF [σ]/δσ. This equation tells us that the generating functional of the

deformed theory is simply:

FV [σ] = F [σ] +

∫

ddxV [σ]. (4.11)

This result is independent of the AdS/CFT correspondence and holds for any theory ad-

mitting a large N expansion. Let us make explicit the N dependence of our formulas (in

the adjoint case, to be concrete). Define O such that its VEV is O(N0), i.e. finite in the

large-N limit. W [J ] is O(N2) so we define W [J ] = N2w[J ]. The functional integral over

CFT fields φ gives

e−N2w[J ] =

∫

[dφ]e−S−
R

ddxN2JO. (4.12)
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Add a multi-trace deformation V (O) = N2v(O) using the method of [16], and define

F [σ] = N2f [σ]. Then:

e−N2fV [σ] =

∫

[dφ][dJ ]e−S−
R

ddxN2[JO−Jσ+v(σ)]

=

∫

[dJ ]e−N2{w[J ]+
R

ddx[−Jσ+v(σ)]} = e−N2{f [σ]+
R

ddxv(σ)}. (4.13)

The last equality holds because in the large N limit the functional integral reduces to its

saddle-point approximation.

Equation (4.11) — or, equivalently eq. (4.13) — contains in a compact form all results

on multitrace deformations known in the literature. A similar formula was proposed in

ref. [17]. Now, let us recover a few known results, and conclude with a few comments.

1. In the 3d O(N) model, F [σ] = −gcσ
3, σ < 0 [5]. Then, the deformation V (σ) = g6σ

3

is marginal for all λ, and the potential is bounded below for g6 < gc, as previously

announced. At g6 = gc, σ becomes a modulus.

2. Let us add a quadratic perturbation, V = λσ2, and assume ∆ < d/2, as in [14, 18].

According to our eq. (4.11), the effective potential F is

FV [σ] =

∫

ddkσ̃(−k)[kd−2∆ + λ]σ̃(k) + O(σ3). (4.14)

Here the tilde denotes the Fourier transform. In the UV, k2∆−d À λ and the con-

nected two-point function of O is

〈Õ(k)O(0)〉 ∼ k2∆−d. (4.15)

This equation says that the UV dimension of O is ∆. In the IR, kd−2∆ ¿ λ, so that

〈Õ(k)O(0)〉 ∼
1

kd−2∆ + λ
=

1

λ
−

kd−2∆

λ2
+ O(λ−3). (4.16)

The first term in the expansion is just a contact term; the second says that the IR

dimension of O is d−∆ (cfr [14, 18]). Notice that the IR theory is nontrivial because

kd−2∆ is (generically) nonlocal. Of course, a standard kinetic term for σ, proportional

to k2 would give a trivial IR fixed point. When ∆ is an integer, one has to remember

that the σ kinetic term is still nonlocal because it is of the form k2∆ log k2.

3. In [14], Witten gives an example of one-loop flow induced by a double-trace pertur-

bation. We can recover that behavior thanks to our eq. (4.11).

Choose ∆ = d/2. Then we have, instead of eq. (4.14),

FV [σ] =

∫

ddkσ̃(−k)

[

1

log(k2/µ2)
+ λ

]

σ̃(k) + O(σ3). (4.17)

Next, renormalise the coupling by demanding that the kinetic term vanishes at a

constant k2 = Λ2, independent of µ. This defines the running of λ by the equation

1

λ(µ)
= − log(Λ2/µ2). (4.18)

Up to obvious manipulations, this is the same as Witten’s eq. (4.9) [14].
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4. Notice that it is always possible to create flat directions in σ by choosing σ constant

and deforming with V (σ) = −F (σ).

5. To preserve conformal invariance, we need

V (λ∆σ) = λdV (σ). (4.19)

In three dimensions this gives us back the cubic potential for deformations of confor-

mal weight one.

Consider now again the perturbation V = (g6/3)σ
3 in the O(N) model. Here d = 3,

∆ = 1. In our conventions, the entire action is multiplied by N :

S = N

∫

d3x[∂µφ∂µφ + Jφ2 − Jσ + V (σ)]. (4.20)

When g6 = gc, a one-dimensional moduli space appears. The modulus is the VEV 〈φ2〉 = σ.

The equation relating σ to J is

J = (gc − g6)σ
2. (4.21)

By keeping the physical mass (i.e. J) constant, we get the RG trajectory of ref. [5], upon

identifying |σ| with the mass scale µ:

0 = −
dg6

dµ
µ + 2(gc − g6). (4.22)

We can also easily find the existence of a Goldstone pole 1/p2 for the composite state

φ2. Indeed, when J is nonzero W [J ] can be expanded in powers of derivatives as (we

specialize our results to d = 3, ∆ = 1)

W [J ] = N

∫

d3x[w(J) + G(J)∂µJ∂µJ + · · ·]. (4.23)

Here · · · stands for higher-derivative terms. Straightforward dimensional analysis and

eqs. (4.7) give

w(J) = −
2

3
λ−1/2

c J3/2, G(J) ∝ J−3/2. (4.24)

The effective action F [σ] also admits a derivative expansion, whenever σ 6= 0:

F [σ] =

∫

d3x[−(λc/3)σ
3 + G̃(σ)∂µσ∂µσ + · · ·]. (4.25)

The kinetic term G̃(σ) can be obtained by explicitly performing the Legendre transforma-

tion or by dimensional analysis. In either ways we get G̃(σ) ∝ σ−1.

The perturbed generating functional FV [σ] is given by eq. (4.11), so, at g6 = gc, FV [σ]

exhibits a 1/p2 Goldstone pole outside the origin of the moduli space

FV [σ] = constant × N

∫

d3xσ−1∂µσ∂µσ + · · · . (4.26)

Of course, this expansion makes sense only when |∂σ| ¿ σ2.
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Let us examine next the conserved currents in the perturbed O(N) model. In the free

O(N) model there exist an infinite number of them:

Jµ1...µn
(x) = φ

↔
∂ µ1

. . . .
↔
∂ µn

φ. (4.27)

When g6 = gc and σ = 〈φ2〉 6= 0, σ becomes the interpolating field of a zero-mass Goldstone

particle:

〈p|φ2(x)|0〉 = Fσ exp(ipµxµ), p2 = 0. (4.28)

The constant Fσ is the analog of the pion coupling strength. Now, at leading order in 1/N ,

σ, and therefore J , are nonzero constants. So, the correlators

〈0|Jµ1...µn
(x)φ2(y)|0〉, 〈0|Jµ1...µn

(x)φ2(y)φ2(z)|0〉, (4.29)

are one-loop integrals made of the free, massive propagators of the fields φa, a = 1, . . . ., N .

So, they are nonzero and localized. More precisely, they behave as, e.g.

〈0|Jµ1...µn
(x)φ2(y)|0〉 ∼ exp(−J1/2|x − y|), for |x − y| À J−1/2. (4.30)

Because of eq. (4.28), this means also that the matrix elements of currents between one-

and two-Goldstone boson states are nonzero:

〈0|Jµ1...µn
(x)|p〉 6= 0, 〈0|Jµ1 ...µn

(x)|p1, p2〉 6= 0. (4.31)

Since σ is the interpolating field for the Goldstone state, this means that at low energy

E ¿ J1/2, the currents Jµ1...µn
(x) are

Jµ1...µn
(x) = A∂µ1

. . . .∂µn
σ(x) + Bσ(x)

↔
∂ µ1

. . . .
↔
∂ µn

σ(x). (4.32)

The constants A and B can be extracted from eqs. (4.29,4.31). Even before any computa-

tion, 1/N counting gives

A = O(1/N), B = O(1/N2). (4.33)

In conclusion, when g6 = gc, at any point outside the origin of the moduli space,

conformal invariance is broken by the VEV of σ. At low energy E ¿ 〈σ〉, the only light

propagating degree of freedom is the Goldstone boson σ itself. The dual interpretation of

this phenomenon in the bulk is that the 4d space flows from an AdS with curvature radius

R to another AdS space with radius R′ ¿ R. Such flows perhaps may be described by

bulk duals of the CFT, in analogy to what was done in AdS5 in [19].

It is instructive to apply the formalism developed in this section to a cubic deformation

of the IR limit of SYM with 16 supercharges in 3d. In this case, we have a good control of

the bulk dual, while the boundary theory is hard to study directly.
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5. More on AdS4 supergravity duals of 3d CFTs and their instabilities

We spent some time in analysing the O(N) model because while it is very simple as a

boundary theory, yet it may shed light on a quite mysterious bulk theory on AdS4. If

we want to gain more control on the bulk theory, instead, we should look elsewhere. For

instance, we could take as CFT the IR limit of a 3d super Yang-Mills SU(N) theory

with 16 supercharges in the large N limit. Its holographic dual is the low-energy limit

of a theory living on a stack of M-theory branes, which is 11d supergravity compactified

on AdS4 × S7 [20]. The dual theory describing the correlators of the superconformal

multiplet containing the 3d stress-energy tensor is a consistent dimensional reduction of

such supergravity, namely, N = 8, SO(8) gauged supergravity [21]. The effect of multitrace

deformations in this theory has been studied at length by Hertog and Horowtiz [11 – 13].

In particular, in [11], it was shown that a marginal, triple-trace deformation induces a

big crunch singularity in the bulk. Correspondingly, the boundary CFT is unstable: the

expectation value of the composite operator appearing in the deformation diverges in finite

time. This result can be recovered straightforwardly using our formalism. First of all, we

have to specialize our formulas to the deformation studied in [11]. The operator considered

there has dimension ∆ = 1, and it is dual to a scalar in AdS4.

The unperturbed effective action for that operator, that we will call F [σ] as in the

previous section, is again largely determined by dimensional analysis. More precisely,

when σ is nonzero (and large), its kinetic term K is

K[σ] =
N2

8
(σ−1∂µσ∂µσ + σ). (5.1)

Since the 3-d boundary CFT is strongly interacting, we cannot derive this result by writing

down the action for the adjoint scalars φ of the super Yang-Mills theory, and using the fact

that σ ∝ Tr φ2. We must use instead two properties: 1) the effective action is conformally

invariant, and so is its kinetic term. 2) σ has dimension ∆ = 1. By setting σ = ϕ2,

eq. (5.1) becomes the standard free action of a conformally coupled scalar ϕ (not to be

confused with φ!). The linear term in σ arises because the boundary theory lives on R×S2,

and the sphere has unit radius. Notice that the formula we wrote makes sense only when

σ2 À |∂σ|; in particular, it does not apply to the origin of the moduli space (σ = 0).

Let us add next the triple-trace perturbation U = −N2(f/3)σ3. Using our general

formulas, the effective action becomes F +
∫

d3xU , so the perturbed potential is

V (σ) = N2 f0 − f

3
σ3. (5.2)

Here we have allowed the possibility that the unperturbed action has a (conformally in-

variant) potential (f0/3)σ
3, in analogy with the O(N) case.

Consider now a cosmological solution as in [11 – 13], that depends only on time. The

total energy is conserved so we can write a first integral of the equations of motion following
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from the lagrangian K + V :5

1

8σ

(

dσ

dt

)2

+
σ

8
+

f0 − f

3
σ3 = E. (5.3)

One particular solution, obtained by setting E = 0, is σ = α/ cos t. Substitution in the

energy conservation equation gives

α sin2 t + α cos2 t +
8

3
(f0 − f)α3 = 0, (5.4)

i.e. α =
√

3/8(f − f0). So, when f > f0 there exists a runaway solution in which the

VEV σ of a CFT operator diverges in finite time. The dual phenomenon in AdS4 is that

regular initial data evolve into a “big crunch” singularity that reaches the boundary in

finite time [11]. This is a clear cut case of singular behavior in the bulk that is not cured

by embedding supergravity in a CFT dual.

This divergence may be less dramatic than it seems. In this case the proposed boundary

theory is built out of adjoint fields. The boundary description of the bulk configuration is

a three dimensional CFT with a non-supersymmetric yet marginal deformation of the form

(Tr φ2)3. However, using the O(N) vector model as a guide, we conjecture that such an

operator is not marginal quantum mechanically, but is actually irrelevant.6 So, we expect

the classical deformation to become infrared irrelevant for any finite value of N .

This is a case in which stringy (i.e. O(1/N)) perturbative corrections come to the

rescue, since an irrelevant operator signals large distance modifications of the AdS back-

ground. The IR divergence makes the smooth initial condition leading to a big crunch ill

defined, at least in the sense that it has infinite energy with respect to an asymptotically

AdS background.

This is not the type of singularity that string theory on AdS is supposed to resolve

because at finite N the initial data leading to a big crunch instability are not well defined

near the boundary of AdS4. The dual statement is that in the presence of a runaway

solution where some of the VEVs diverge in finite time, the CFT needs a UV completion.

Moreover, the late-time behavior of the CFT depends strongly on that completion and is

therefore non-universal. The simplest way to understand this is to notice that in order to

define the CFT, one needs to introduce a UV cutoff Λ, even when the theory is finite.7

In the case of strings/M-theory, this UV cutoff is quite physical: it is the string/M-

theory mass scale. The effect of the cutoff manifests itself in F [σ] through higher-dimensio-

nal operators, weighted by inverse powers of Λ. Thus, the complete potential of V is not

5Recall that we use the mostly plus convention for the lorentzian metric.
6In the adjoint N = 16 CFT, the triple-trace deformation mixes at O(1/N) with single-trace operators.

Since the IR of the deformed theory is non supersymmetric, the triple-trace will generically mix with all

operators with the same unbroken global symmetries. These will include irrelevant operators that dominate

the OPE at short-distance. In the holographic dual, they also determine the near-boundary behavior of the

metric.
7A simple example is the O(N) model when g6 is larger than the critical value. There, a careful treatment

of the theory already at N = ∞ shows that in the presence of a cutoff all masses are of the order of the

cutoff, so that the theory does not possess a universal low energy limit.
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as in eq. (5.2); rather, it schematically reads

V (σ) = N2 f0 − f

3
σ3 +

∞
∑

n=4

cnΛ3−nσn. (5.5)

The coefficients cn can be of order N2 or less. In any case, the effect of the higher-

dimensional operators cannot be neglected when σ is so large that for some n N2(f0 −

f)σ3 ∼ cnΛ3−nσn.

The system needs to be modified in the UV and in that case one simply does not know

what really does happen at late times when the singularity approaches the boundary.

Finally, we should point out that in some cases the UV modification can be quite

simple and involve no exotic physics. It could be as simple as an extra massive degree of

freedom.

To see that, let us consider again the deformed O(N) model we studied in sections 2

and 3 and add to it a single massive scalar S. The lagrangian density is

L =
N

2

[

∂mφ∂mφ + ∂mS∂mS + αM3/2φ2S +
1

2
Mφ2S2 +

β

2
M(φ2)2 +

γ

2
M2S2

]

. (5.6)

Here M is a mass parameter and α, β, γ are arbitrary, positive, dimensionless constants.

The potential is obviously bounded below.

At energy scales E ¿ M we can integrate out the field S using its equations of motion.

The contribution from the kinetic term is negligible so we have

αM3/2φ2 + (Mφ2 + γM2)S = 0. (5.7)

Substituting into eq. (5.6) we get a potential for φ

V = N

[

β

2
M(φ2)2 −

α2M3(φ2)2

2Mφ2 + 2γM2

]

. (5.8)

The term proportional to (φ2)2 in this potential can be canceled by setting α2/γ = β.

Then, the potential starts with the dimension-3 operator (φ2)3. Precisely:

V = N

[

−
α2M

2γ
(φ2)2

∞
∑

n=1

(

−
φ2

γM

)n
]

. (5.9)

Define g = α2/2γ2. Then, in the limit γ → ∞, α → ∞, g = constant, all irrelevant terms

vanish as inverse powers of γ.

Notice that the UV complete theory is always stable, even when g > gc. The UV

completion is recovered by “integrating in” the field S. Unlike the case of N = 1 superpo-

tentials, here the procedure is highly non unique.

This toy example suggests us also an alternative description of the resolution of the

singularity in the adjoint model. In that case, the UV theory is most likely strongly

interacting. Thus, terms which may seem unstable when extrapolated from weak coupling

could actually represent a stable potential, when evaluated appropriately at strong coupling

around a UV fixed point. So, the large-φ2 instability cannot be used as a sure diagnostic

to invalidate the theory.
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6. Discussion/conclusions

We conclude with some general remarks on the meaning of instabilities occurring both in

the bulk and in the dual boundary CFT, and whether string theory should cure those in-

stabilities. The argument could be posed in the following manner. Assume one is somehow

given a bulk theory containing a singularity and its corresponding CFT boundary dual,

also singular or unstable. What is the interpretation of the instability in a complete string

theoretical picture?

One may think that an instability of the boundary CFT is a disaster. In fact one

can imagine instabilities in several forms. They could correspond to non-positive definite,

relevant operators in the boundary theory which destabilize a flat direction. They could be

marginal unstable deformations, and they could also come in the form of irrelevant, unstable

boundary operators. The relevant and marginal operators need to be protected so that

they do not become irrelevant as the coupling increases. All these cases have in common

the feature that they indeed destabilize the boundary theory. Moreover, such deformations

correspond to introducing various forms of repulsive forces among the branes whose near-

horizon limit generated the bulk geometry. Such configurations will be unstable in the bulk

and the branes will search for a new equilibrium configuration. Generically they may do

so by fleeing to infinity, perhaps flat 10d space. These are indeed unstable configurations

ab initio and it is not one of the tasks of string theory on AdS to resolve them. Differently

said, these pathologies signal instabilities of the near-horizon limit of string theory, not of

string theory per se. [22 – 24].

If we examine more closely the different types of instabilities we find that they manifest

themselves in the following manner. In the relevant case, the instability may emerge at

some time, say t = 0, deep inside the bulk and then spread out to the boundary along

a null geodesic. On the other hand an irrelevant boundary instability generates already

from the “start” at t = 0 a greatly deformed bulk metric near the boundary. This is

the particular case we have discussed in this note and it corresponds to an unstable bulk

configuration which string theory need not resolve. This observation still leaves open the

question of what would be the appropriate diagnostic for a real failure of non-perturbative

string theory to resolve a singularity. For the time being, all instabilities exhibited in the

literature signal at most a sickness of the near-horizon limit. On the other hand, once a

stable CFT dual to an AdS background exists, then one knows that all bulk singularities

are indeed resolved. For instance, the unstable deformation of the O(N) model at g6 > gc

can be stabilised by the simple UV completion we described at the end of last section. Once

this is done, the bulk singularity no longer reaches the boundary. The same phenomenon

happens in the CFT dual to 11d supergravity on AdS4 × S7 we studied in section 5: when

the unstable potential is stabilised by irrelevant operators, the singularity does not hit the

boundary but evolves instead into a giant black hole [13].

Finally we may ask ourselves if there exist universal properties shared by all resolutions

of the instabilities of the low-energy sector of the dual boundary field theory. When the

instability is resolved by introducing irrelevant operators the theory may seem to lose its

predictive power. On the other hand there is a possible universal signature of stabilization:
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a boundary theory consisting of one or several stationary points, stable as well as unstable,

may enable one to resolve a cosmological singularity. The story may go always as follows:

near the unstable extrema of the potential, the bulk theory will effectively describe a big

bang or big crunch, but that potentially singular behavior will eventually change into

another one, which in the boundary theory will be described as a relaxation towards one

of its true stable minima.
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